关键词 |
出售人脸识别系统,人脸识别系统价格,昌邑市人脸识别系统,出售人脸识别系统 |
面向地区 |
全国 |
人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。
人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。
主流的人脸检测方法基于以上特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。人脸检测过程中使用Adaboost算法挑选出一些能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测速度。
人脸图像预处理:对于人脸的图像预处理是基于人脸检测结果,对图像进行处理并终服务于特征提取的过程。系统获取的原始图像由于受到各种条件的限制和随机干扰,往往不能直接使用,在图像处理的早期阶段对它进行灰度校正、噪声过滤等图像预处理。对于人脸图像而言,其预处理过程主要包括人脸图像的光线补偿、灰度变换、直方图均衡化、归一化、几何校正、滤波以及锐化等。
一般来说,人脸识别系统包括图像摄取、人脸定位、图像预处理、以及人脸识别(身份确认或者身份查找)。系统输入一般是一张或者一系列含有未确定身份的人脸图像,以及人脸数据库中的若干已知身份的人脸图象或者相应的编码,而其输出则是一系列相似度得分,表明待识别的人脸的身份。
人脸识别主要用于身份识别。由于视频监控正在快速普及,众多的视频监控应用迫切需要一种远距离、用户非配合状态下的快速身份识别技术,以求远距离快速确认人员身份,实现智能预警。人脸识别技术无疑是佳的选择,采用快速人脸检测技术可以从监控视频图象中实时查找人脸,并与人脸数据库进行实时比对,从而实现快速身份识别。
人脸识别门禁是基于的人脸识别技术,结合成熟的ID卡和指纹识别技术而推出的安全实用的门禁产品。产品采用分体式设计,人脸、指纹和ID卡信息的采集和生物信息识别及门禁控制内外分离,实用性高、安全可靠。系统采用网络信息加密传输,支持远程进行控制和管理,可广泛应用于银行、、公检法、智能楼宇等区域的门禁安全控制。
人脸识别问题中x是图像,当然图像在计算机中的存储方式是数字矩阵对应图像的像素点阵,比如1024×768等等,而每个像素点是用数值来表示RGB或者黑白灰,不同的图像所对应的数字矩阵是不同的,但在数值分布上会呈现出一定的特征,比如人脸和五官,不管出现在图像中的哪个位置,对应的数值都会有一定的规律。
当前主流的人脸识别算法,在进行人脸识别核心的人脸比对时,主要依靠人脸特征值的比对。所谓特征值,即面部特征所组成的信息集。我们辨别一个人的特征,可能会记住他是双眼皮、黑眼睛、蓝色头发、塌鼻梁……但人工智能算法可以辨别和记住的面部特征会比肉眼所能观察到的多很多。